A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast.

نویسندگان

  • S C Kampranis
  • R Damianova
  • M Atallah
  • G Toby
  • G Kondi
  • P N Tsichlis
  • A M Makris
چکیده

The mammalian inducer of apoptosis Bax is lethal when expressed in yeast and plant cells. To identify potential inhibitors of Bax in plants we transformed yeast cells expressing Bax with a tomato cDNA library and we selected for cells surviving after the induction of Bax. This genetic screen allows for the identification of plant genes, which inhibit either directly or indirectly the lethal phenotype of Bax. Using this method a number of cDNA clones were isolated, the more potent of which encodes a protein homologous to the class theta glutathione S-transferases. This Bax-inhibiting (BI) protein was expressed in Escherichia coli and found to possess glutathione S-transferase (GST) and weak glutathione peroxidase (GPX) activity. Expression of Bax in yeast decreases the intracellular levels of total glutathione, causes a substantial reduction of total cellular phospholipids, diminishes the mitochondrial membrane potential, and alters the intracellular redox potential. Co-expression of the BI-GST/GPX protein brought the total glutathione levels back to normal and re-established the mitochondrial membrane potential but had no effect on the phospholipid alterations. Moreover, expression of BI-GST/GPX in yeast was found to significantly enhance resistance to H(2)O(2)-induced stress. These results underline the relationship between oxidative stress and Bax-induced death in yeast cells and demonstrate that the yeast-based genetic strategy described here is a powerful tool for the isolation of novel antioxidant and antiapoptotic genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by Bax and oxidative stresses in yeast and plants.

Using a conditional life or death screen in yeast, we have isolated a tomato (Lycopersicon esculentum) gene encoding a phospholipid hydroperoxide glutathione peroxidase (LePHGPx). The protein displayed reduced glutathione-dependent phospholipid hydroperoxide peroxidase activity, but differs from counterpart mammalian enzymes that instead contain an active seleno-Cys. LePHGPx functioned as a cyt...

متن کامل

Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases.

The Saccharomyces cerevisiae genome encodes three proteins that display similarities with human GSTOs (Omega class glutathione S-transferases) hGSTO1-1 and hGSTO2-2. The three yeast proteins have been named Gto1, Gto2 and Gto3, and their purified recombinant forms are active as thiol transferases (glutaredoxins) against HED (beta-hydroxyethyl disulphide), as dehydroascorbate reductases and as d...

متن کامل

Functional classification and biochemical characterization of a novel rho class glutathione S-transferase in Synechocystis PCC 6803

We report a novel class of glutathione S-transferase (GST) from the model cyanobacterium Synechocystis PCC 6803 (sll1545) which catalyzes the detoxification of the water pollutant dichloroacetate and also shows strong glutathione-dependent peroxidase activity representing the classical activities of zeta and theta/alpha class respectively. Interestingly, sll1545 has very low sequence and struct...

متن کامل

Selenium enrichment and anti-oxidant status in baker's yeast, saccharomyces cerevisiae at different sodium selenite concentrations.

The use of selenized yeast as enriched selenium supplements in human nutrition has become a topic of increasing interest over the last decade. The present study was designed with the aim to achieve a balance between selenium (Se) incorporation and optimal growth of yeast cells along with effect of Se enrichment on antioxidant defense status of yeast cells. Since oxidative stress has been known ...

متن کامل

Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii.

Known eukaryotic selenocysteine (Sec)-containing proteins are animal proteins, whereas selenoproteins have not been found in yeast and plants. Surprisingly, we detected selenoproteins in a member of the plant kingdom, Chlamydomonas reinhardtii, and directly identified two of them as phospholipid hydroperoxide glutathione peroxidase and selenoprotein W homologs. Moreover, a selenocysteyl-tRNA wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 38  شماره 

صفحات  -

تاریخ انتشار 2000